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Effect of grain size on elastic modulus and

hardness of nanocrystalline ZrO2-3 wt% Y2O3

ceramic
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Dense nanocrystalline ZrO2-3 wt% Y2O3 ceramics with grain sizes ranging between 23 to
130 nm were tested by ultrasonic pulse echo and Vickers hardness. The elastic modulus
and hardness results were corrected for the residual porosity and the phase content. The
corrected elastic moduli exhibited continuous decrease with decrease in the grain size. In
contrast, no correlation was found between the corrected hardness and grain size. The
percolative composite model was used to describe the changes in the elastic moduli in
terms of percolation of the elastic wave through the intercrystalline phase at the
percolation threshold. The absence of correlation with the hardness results was explained
due to the other energy absorbing mechanisms such as microcracking beneath the
indenter. C© 2004 Kluwer Academic Publishers

1. Introduction
Recently much effort has been invested in the char-
acterization of the physical and mechanical proper-
ties of the nanocrystalline materials. The main differ-
ence between the bulk nanocrystalline materials and
their conventional counterparts is the high density of
the grain boundaries in the former, a fact that con-
tributes to significant changes in the material proper-
ties. Due to the intrinsic brittleness of the ceramic crys-
tals any reduction in their stiffness and yield strength
may be important towards the gain of some ductility
in their polycrystalline state. Superplasticity of Y2O3-
stabilized tetragonal zirconia polycrystals (Y-TZP) is
well documented in the literature [1]. The onset tem-
perature for superplasticity was found to decrease with
lowering the grain size [2, 3] in agreement with the phe-
nomenological equation for superplasticity [4]. Nev-
ertheless, this equation should take into account also
any changes that occur in the elastic shear modulus
and the yield strength due to the nanometer grain sizes.
Moreover, in the light of the miniaturization of many
different devices within which the grain size could be
limited to the material component dimensions, it be-
comes important to determine the grain size effects on
the mechanical properties of Y-TZP in the nanometer
regime.

The present paper analyses the changes in the elastic
modulus and hardness of nanocrystalline Y-TZP versus
grain size, while considering the effects of porosity as
well as the phase content on these properties.

2. Experimental procedure
Amorphous to nanocrystalline powders of ZrO2-3 wt%
Y2O3 (Y-TZP) were prepared by the sol-gel method,
followed by cold pressing, presintering and hot iso-
static pressing (HIP) to dense specimens. Fabrication
conditions as well as the characterization parameters
of these specimens have already been described in de-
tail elsewhere [5]. Following the HIP process, dense
cylindrical-shaped specimens, 11 mm in diameter and
10 mm in thickness were prepared. These specimens
had the grain size in the range of 23 to 130 nm ac-
cording to the X-ray line broadening measurements.
In a few specimens, the grain size was also char-
acterized by scanning and transmission electron mi-
croscopy (SEM/TEM) an example of which is shown in
Fig. 1. The final densities ranged between 94 to 99% of
the theoretical density as determined by the Archimedes
method, while taking into account the phase content of
each specimen.

The elastic modulus (E) was determined by the ul-
trasonic pulse-echo method, using a 10 mm diameter
cylindrical transducer and longitudinal wave with the
frequency of 2.25 MHz that was propagated along the
specimens’ axis. The accuracy in the wave travel time
measurements was ±1 µ·sec. The lengths of the speci-
mens were determined within the accuracy of ±2 µm.

Vickers pyramid hardness (VPH) tests were per-
formed using a 500 g load for 10 s duration. Preliminary
tests with increasing the load have shown the onset load
for microcrack formation around the indent to be above
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Figure 1 SEM image of the 97% dense hot-isostatically pressed
nanocrystalline YTZP with average grain size of ∼60 nm.

500 g. This load yields the average indentation size (di-
agonal) of 30 µm. Such indent size is larger by two
orders of magnitude compared to the measured grain
size and porosity (Fig. 1). Thus, the indented volume
contains more than several thousands of nano-grains
which is enough for measuring the specimens’ bulk be-
havior. At least eight indentations were performed for
determining the average hardness of each specimen.

The elastic modulus and hardness of a commercial
(HIPed) fully dense fully-tetragonal Y-TZP (4 wt%
Y2O3) as well as skull-melted polycrystalline mono-
clinic (pure) zirconia with average twin size of 1 µm
were measured as the reference specimens.

3. Results
3.1. Elastic modulus
The overall results were summarized in Table I. The
grain size versus final density showed that denser spec-
imens were associated with finer grain size. This finding
which is related to the presintering conditions was dis-
cussed in a previous paper [5]. However, the measured
elastic moduli decreased with increase in the relative
density (Fig. 2), in contrast to that expected for con-
ventional materials. Nevertheless, the measured elastic
moduli may be affected by porosity, phase assemblage
and grain size. Once the actual values of the elastic
moduli of the specimens together with their porosity
and phase content were determined (Table I), the ef-

T ABL E I Characteristics of the nanocrystalline Y-TZP specimens

No. Density (%) Grain size (nm) V a
t (%) E (GPa) E0 (GPa) En

0 (GPa) H (GPa) H0 (GPa) Hn
0 (GPa)

1 99 23 42 178 182 171 10.97 11.76 7.96
2 99 35 31 198 202 188 9.26 9.93 6.24
3 96 43 31 195 211 186 9.24 12.22 6.23
4 97 45 33 210 223 210 9.08 11.20 6.21
5 97 58 17 250 265 250 10.29 12.69 6.26
6 95 82 31 246 272 246 9.11 12.93 6.14
7 94 106 32 236 266 236 7.22 10.99 4.90
8 94 107 58 246 277 246 8.82 13.42 7.07
9 94 130 34 246 277 246 8.72 13.27 6.00

10 100 500 97 307 307 306 14.21 14.21 14.00
11 100 1000 0 213 213 213 6.17 6.17 6.17

aVt + Vm = 1.

fects of the last two parameters on the first could be
evaluated. In this respect, the elastic modulus of the
porous specimen is expressed by [6]:

E = E0 · e(−bP) (1)

where E0 is the elastic modulus of the fully dense ma-
terial, P is volume fraction of the porosity and b is an
empirical constant ranging between 2 to 4. The rela-
tively low volume fraction of the porosity (below 6%)
in the present specimens assures its closed nature, the
effect of which on the elastic modulus is far smaller
than open porosity. This in turn will enable us to use the
simple approximation in Equation 1. Using the data for
E in Table I and assuming b = 2 for Y2O3-stabilized
zirconias [7], the elastic moduli of the present spec-
imens in their fully dense conditions were calculated
(E0 values in Table I).

At this stage, one may consider the effect of the phase
content on the elastic modulus, since the specimens
contained different volume fractions of the tetragonal
and monoclinic phases. A vast amount of data has been
published on the elastic moduli of zirconia alloys and
especially on their elastic constants [8–15]. These data,
which cover a wide range of the Y2O3 compositions, in-
dicate a relatively small difference between the elastic
moduli of the cubic (c), tetragonal (t) and monoclinic
(m) polymorphs of zirconia. This finding is not unex-
pected since the t and m crystal structures of zirconia
resemble a slightly distorted version of the fluorite-type
c crystal structure. These crystal structures also exhibit
similar lattice parameters as well as densities [16]. The
published elastic constants were used to calculate the
elastic moduli with respect to the Hill’s approach [17].
Thus, the most reproducible values for the elastic mod-
uli of the c, t, and m phases in the Y2O3-stabilized
zirconias were chosen as 220, 214 and 230 GPa, re-
spectively.

In order to reveal the net effect of the grain size
on the elastic modulus the E0 values were normal-
ized to exclude the phase content effects, as will be
described below. The most exact solution for the elas-
tic modulus of a multiphase system was derived by
Hashin and Shtrikman [18]. However, similar results
especially for phases of similar properties could be ob-
tained through the Hill’s model which represents the
algebraic average of the values derived by Voigt and
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Figure 2 Measured elastic modulus versus final density of the nanocrys-
talline Y-TZP’s.

Reuss approximations [19]. These values were calcu-
lated according to the following equations:

EV = Vt · Et + (1 − Vt) · Em (2)

1

ER
= Vt

Et
+ (1 − Vt)

Em
(3)

EH = EV + ER

2
(4)

where Vt is the volume fraction of the t phase, and the
indices V , R, H , t , and m refer to Voigt, Reuss, Hill,
tetragonal and monoclinic, respectively. Using the val-
ues of Et = 214 GPa and Em = 230 GPa, the pre-
viously calculated E0 values were normalized (En

0 in
Table I) by multiplying it with the factor (Et/EH) with
respect to Vt of each specimen. Therefore, the resultant
elastic moduli values are expected to be affected only
by the grain size. The values versus grain size were
shown in Fig. 3 and exhibit a sharp decrease of the
elastic modulus with decrease in grain size.
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Figure 3 Elastic modulus values corrected for porosity and the phase
content versus the grain size.

4

6

8

10

12

14

92 93 94 95 96 97 98 99 100

V
ic

ke
rs

 H
ar

d
n

es
s 

 [G
P

a]

Relative Density [%]

Figure 4 Measured Vicker hardness versus final density of the nanocrys-
talline Y-TZP’s.

3.2. Hardness
The measured hardness was found to increase with den-
sity as shown in Fig. 4. A similar approach was used to
analyze the hardness raw data in order to reveal the net
effect of the grain size on hardness. In this respect, the
hardness of the specimens in their fully dense condi-
tion may be calculated using the empirical expression
developed for ceramics [20]:

H = H0 · e(−BP) (5)

where H0 is the hardness of the fully dense ceramic, P
is volume fraction of the porosity, and B is an empirical
constant which was determined to be 7 for 4 wt% Y2O3-
TZP [21]. These values were listed as H0 in Table I. The
hardness of the reference specimens were determined
to be 14.21 and 6.17 GPa for the submicron grain size
HIPed fully tetragonal (specimen #10) and the skull-
melted polydomain monoclinic specimens (specimen
#11), respectively.

In contrast to the similarities found in the elastic mod-
uli of the zirconia polymorphs, their hardness was re-
ported to be quite dissimilar [3, 22–26]. Considering
the published hardness data for Y2O3-stabilized zirco-
nias together with the results from the reference spec-
imens, the values of 11.6 and 6.2 GPa were selected
for the t and m phase, respectively. Again, considering
the different volume fractions of the t and m phases in
the specimens, the H0 data were normalized in such a
way that the hardness values became independent of
the phase content. In this respect, the hardness of a ho-
mogeneous randomly distributed two-phase Y-TZP is
given by the composites’ hardness:

Hc = Vt · Ht + (1 − Vt) · Hm (6)

where the index c refers to composite and the other
characters have the same meanings as was mentioned
earlier. Thus, using the hardness of the t and m phases
together with Vt (Table I) and Equation 6, the compos-
ite hardness were determined. This was followed by
multiplying the H0 values by the normalizing factor
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Figure 5 Vickers hardness values corrected for porosity and the phase
content versus the grain size.

(Hc/Ht) which corresponded to the Vt of each speci-
men. The resultant values (H n

0 in Table I) which are
independent of the phase content were plotted versus
the grain size as shown in Fig. 5. In contrast to the elas-
tic modulus, the hardness values had large scatter and
no definite dependence on the grain size was found.

4. Discussion
Effects of the grain size on the mechanical properties
such as the elastic modulus, yield strength and hard-
ness were investigated mainly for nanocrystalline met-
als [27–34] and a few ceramics [35–37]. These investi-
gations either support or negate the presence of such an
effect on the mechanical properties. As a result, numer-
ous models based on dislocations pile-up or composite
approaches have been developed to explain the changes
in hardness and yield strength at the nanometer regime.
However, there is a general agreement that the elastic
modulus decreases with grain size [27–29]. Such a de-
crease has been also shown by atomic embedded model
and dynamic simulations [38–40]. In this respect, the
nanocrystalline phase could be considered as a com-
posite having grain boundary (intercrystalline) phase as
well as grain interior (crystalline) phase. The mechan-
ical and physical properties of the composite therefore
depend on the corresponding properties of the com-
posite constituents. However, such models have been
unable to explain the significant and abrupt changes
in the elastic modulus at the lower grain size range of
the nanoscale regime [41, 42]. The percolative com-
posite model [43] explained these changes in terms of
the percolation of the elastic wave through the different
intercrystalline microstructural components, i.e., grain-
boundaries, triple-lines, and quadruple-nodes. These
changes are expected to occur at the critical grain sizes
at which the volume fractions of the intercrystalline
components reach their threshold values needed for per-
colation. Deptuck et al. [44] measurements indicated
a percolation threshold of 6.2% for elastic modulus
of submicron-sized sintered silver powders. Using the
threshold range of 6 to 15% for percolation of the elas-

tic modulus together with the grain boundary thickness
of 1 nm, the grain size range below which the percola-
tion through the grain boundary ‘phase’ starts is about
28 to 60 nm [43] in agreement with the present results
(Fig. 3). This finding supports the assumption about the
lower elastic modulus contributed by the grain bound-
aries compared to that of the grain interiors.

In order to explain the difference between the elastic
modulus and the hardness results with respect to their
grain size dependencies, one should refer to the nature
of these tests. While the ultrasonic pulse echo test is
a nondestructive technique which samples the bulk of
the material, the hardness test is destructive and sam-
ples only at the materials’ surface. On the other hand,
in order to reveal any effect of the grain size on the
mechanical properties in the nanometer regime, the ex-
perimental results must be free of any artifacts (i.e.,
incorporation of other energy absorbing mechanisms).
In this regard, the ultrasonic measurement is one of
the most reliable techniques for determining the elas-
tic properties. In contrast, hardness tests in ceramics
are more complicated and often associated with both
plastic deformation and microcracking. Different pro-
cesses such as amorphisation, twinning and microc-
racking were observed by TEM beneath the hardness
indentations and around them in nanocrystalline Y-TZP
[45]. Thus the hardness measurements do not represent
solely the relative contributions of the grain boundary
and the grain interior strength, but also the energy ab-
sorbed due to other processes such as microcracking.
Similar considerations hold for nanocrystalline ductile
metallic alloys within which precipitation and second
phase particles may contribute to hardening as well as
induce microcracking during the hardness tests. These
artifacts cause a large scatter in the hardness results
as was found here and reported by others [46]. Con-
sequently, characterization of the grain size effects in
nanocrystalline materials is preferred by application of
appropriate testing methods which allow nondestruc-
tive sampling of the materials’ bulk structure.

Finally, the decrease in the elastic modulus with grain
size may have significant effects on room temperature
application as well as on superplastic deformation of
nanocrystalline ceramics.
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